Unpacking Interval

 TrainingLisa A. Workman

The Office The Cover-Up Season 6 Episode 24 Dwight Schrute Takes Over Spin Cycle Class

+ Addo	\rightarrow Share

Overview

* History
* Exercise Physiology 101
* The Three Energy Systems
* Training Continuum
* Types of Intervals
* Benefits

History
 Joe Binks
 (1902)

F-lx/wk

I - 'top speed' with rest in between

T-30 minutes

T-Running

$5-6110-$
yard
intervals
'Fast' 200-300 yard

Hannes Kolehmainen
(1912)

History

Hannes Kolehmainen

History

5-10

 repetitions, 1000 m or 3 min $5 \mathrm{sec}, 19 \mathrm{~km} / \mathrm{hr}$ Po ramph known
fine drt america

History
 Gosta Holmer

* Fartlek - periods of fast running intermixed with periods of slower running
* Unstructured

History

* Introduced intervals as \% of VO2max and \% speed of $\mathrm{VO}_{2 \text { max }}$
* $30 \mathrm{~min}, 15 \mathrm{sec}$ runs, 15 sec rest

Dr. Izumi Tabata (1996)

History

* Tabata identified the health benefits of exhaustive 20 seconds work. 10 seconds recovery
 workout plan

Building Blocks

Benefits

Types of Intervals
Training Continuom
Energy Systems
Exercise Physiology

Exercise Physiology 101

The interaction among the pulmonary, cardiovascular and skeletal muscle systems during exercise

Muscle activity	O_{2} and CO_{2} transport	Ventilation $\left(\dot{V}_{\mathrm{A}}+\dot{V}_{\mathrm{D}}=\dot{V}_{\mathrm{E}}\right)$
Peripheral Pulmonary circulation	circulation	

$V_{A,}$ ideal alveolar ventilation/time; $V_{\text {d }}$, physiologic dead space ventilation/time; V_{t}, total ventilation during expiration/time; $Q_{0} 0_{2}$, O_{2} consumption; $Q \mathrm{CO}, \mathrm{CO}_{2}$ production; $\mathrm{VO}_{2}, \mathrm{O}_{2}$ uptake; $\mathrm{Vco}, \mathrm{CO}_{2}$ output; creatine PO_{4}, creatine phosphate. Courtesy of Wasserman

type IIA

rat mATPase (pH 10.5)
Muscle: The First Cog in the System

Muscle: The First Cog in the System

* Three types of muscle fibres:
* Slow Twitch (Type I) Muscle Fibres
* Fast Twitch (Type Ila) Muscle Fibres
* Fast Twitch (Type Ilb) Muscle Fibres
* Others?

Characteristics of the Three Muscle Types

	Slow Twitch	Fast Twitch	Fast Twitch
Contraction Time	Slow	Fast	Very Fast
Size of Motor Neuron	Small	Large	Very Large
Resistance to Fatigue	High	Intermediate	Low
Activity	Aerobic	Long-term Anaerobic	Short-term Anaerobic
Force Production	Low	High	Very High
Mitochondrial Density	High	High	Low
Capillary Density	High	Intermediate	Low
Oxidative Capacity	High	High	Low
Glycolytic Capacity	Low	High	High
Major Storage Fuel	Triglycerides	Creatine Phosphate, Glycogen	Creatine Phosphate, Glycogen

Exercise Physiology 101

The interaction among the pulmonary, cardiovascular and skeletal muscle systems during exercise

Muscle activity	O_{2} and CO_{2} transport	Ventilation $\left(\dot{V}_{\mathrm{A}}+\dot{V}_{\mathrm{D}}=\dot{V}_{\mathrm{E}}\right)$
Peripheral Pulmonary circulation	circulation	

$V_{A,}$ ideal alveolar ventilation/time; $V_{\text {d }}$, physiologic dead space ventilation/time; V_{t}, total ventilation during expiration/time; $Q_{0} 0_{2}$, O_{2} consumption; $Q \mathrm{CO}, \mathrm{CO}_{2}$ production; $\mathrm{VO}_{2}, \mathrm{O}_{2}$ uptake; $\mathrm{Vco}, \mathrm{CO}_{2}$ output; creatine PO_{4}, creatine phosphate. Courtesy of Wasserman

Heart: The Second Cog in the System

Heart: The Second Cog in the System

Exercise Physiology 101

The interaction among the pulmonary, cardiovascular and skeletal muscle systems during exercise

Muscle activity	O_{2} and CO_{2} transport	Ventilation $\left(\dot{V}_{\mathrm{A}}+\dot{V}_{\mathrm{D}}=\dot{V}_{\mathrm{E}}\right)$
Peripheral Pulmonary circulation	circulation	

$V_{A,}$ ideal alveolar ventilation/time; $V_{\text {d }}$, physiologic dead space ventilation/time; V_{t}, total ventilation during expiration/time; $Q_{0} 0_{2}$, O_{2} consumption; $Q \mathrm{CO}, \mathrm{CO}_{2}$ production; $\mathrm{VO}_{2}, \mathrm{O}_{2}$ uptake; $\mathrm{Vco}, \mathrm{CO}_{2}$ output; creatine PO_{4}, creatine phosphate. Courtesy of Wasserman

Lungs: The Third Cog in the System

* Ventilation (V_{E})
* the amount of air we expire in one minute
* VO_{2}

* the volume of oxygen consumed in one minute
* VCO_{2}
* the volume of carbon dioxide produced in one minute

Lungs: The Third Cog in the System

Exercise Physiology 101

The interaction among the pulmonary, cardiovascular and skeletal muscle systems during exercise

Muscle activity	O_{2} and CO_{2} transport	Ventilation $\left(\dot{V}_{\mathrm{A}}+\dot{V}_{\mathrm{D}}=\dot{V}_{\mathrm{E}}\right)$
Peripheral Pulmonary circulation	circulation	

$V_{A,}$ ideal alveolar ventilation/time; $V_{\text {d }}$, physiologic dead space ventilation/time; V_{t}, total ventilation during expiration/time; $Q_{0} 0_{2}$, O_{2} consumption; $Q \mathrm{CO}, \mathrm{CO}_{2}$ production; $\mathrm{VO}_{2}, \mathrm{O}_{2}$ uptake; $\mathrm{Vco}, \mathrm{CO}_{2}$ output; creatine PO_{4}, creatine phosphate. Courtesy of Wasserman

Energy Systems:
The Cogs Working Together as a Team

The Three Energy Systems

Figure 10-1: Sources of production of ATP for muscle contraction

The Three Energy Systems

Figure 3-1: The three systems of energy transfer and their percentage contribution to total energy output during all-out exercise of different durations.

Phosphagen system $8-10$ seconds ($\mathbf{1 0 0} \mathrm{m}$)

Glycogen-lactic acid system
1.3-1.6 minutes (400 m)

Swimmer

Aerobic respiration

Marathon runner
Unlimited time ($\mathbf{1 5} \mathbf{K m}$)
2000 How Stuff Works

Reference: McArdle, Katch and Katch. (1996). Exercise Physiology. Energy, Nutrition and Human Performance. Williams \& Wilkins, Maryland. p. 190.

System	Rate of ATp Production	Energy Source	Capacity of System	Major Limitation	Major Use

Unpacking Interval

 TrainingLisa A. Workman

Training Continuum

Training Continuum

Terms

* Long Slow Distance (LSD)
* Anaerobic/Lactic Threshold
* exercise intensity at which lactic acid starts to accumulate in the blood stream and CO_{2} production begins to increase nonlinearly
* lactate removal fails to keep up with the rate of lactate production causing increased in CO_{2} production
* $\mathrm{VO}_{2 \text { max }}$
* the maximum volume of oxygen consumed in one minute

Training Continuum

Training Continuum

Training Continuum

Aerobic System: LongTerm

* Aerobic Intervals
* Aerobic energy system
* Blood Glucose, Glycogen, Fatty Acids
* 1:1 Work-to-Rest Ratio
* 1:0.5 Work-to-Rest Ratio
* Example: 3 min flat time trial with 1.5 min spin-out recovery

Training Continuum

Aerobic + Anaerobic Systems

* Combination of Aerobic and Anaerobic Capacity/Lactic Systems
* Moving from aerobic to anaerobic back to aerobic
* 1:2 Work-to-Rest Ratio
* Example: 1 minute time trial with 30 s sprint: return back to time trial with each sprint interval

Training Continuum

Fartlek

* Combination of the three energy systems
* Alternating and variable speed and durations
* No prescriptive Work to Rest Ratio
* Example: Lamp post runs lincrease speed for 3 lamp posts, decrease speed for 1 lamp post)

Training Continuom

Anaerobic System: ShortTerm

* Anaerobic Threshold Intervals
* Anaerobic Capacity; Anaerobic Lactic
* Glycolysis/Alycogenolysis
* 1:2 Work-to-Rest Ratio
* Example: 30s Seated Power with 1 min spin-out recovery

Training Continuom

Anaerobic System: Immediate

* Anaerobic Intervals

* Anaerobic Power: Anaerobic Alactic
* ATP-CP
* 1:3 Work-to-Rest Ratio
* Example: 15 s Sprint with 45 s spin-out recovery

Training Continuum

Anaerobic System: Immediate

* $\mathrm{VO}_{2 \max }$ Intervals
* Anaerobic Power: Anaerobic Alactic
* ATP-CP
* 1:2 Work-to-Rest Ratio
* 1:3 Work-to-Rest Ratio
* Example: 30 s at predetermined $\mathrm{VO}_{2 \text { max }}$ with 60 s recovery

Training Continuum

Tabata

* Anaerobic Power: Anaerobic Alactic
* ATP-CP
* 1:0.5 Work-to-Rest Ratio
* Example: 20s at maximal effort with 10s passive recovery, repeat 8 times (4 minute set)

Circuit Training

* "Aerobic Weight Training"
* Stations with a variety of exercises that work the entire body
* Including a weight that can be lifted without going to failure
* May include cardiovascular exercise such as running, skipping, cycling etc.
* Continuous time interval (consider the energy systems!)
* Example: 1 minute at each station; complete cycle 1 to 3 times.

High Intensity Interval Training (IIII)

* Where does HIIT belong?
* A title to various forms of intervals including VO ${ }_{2 \text { max, }}$, Tabata, some circuit training

High Intensity Interval Training (HIIT)
 n Lifestyle Health and Fitness Body

HIIT: is the fitness scene's biggest fad doing more harm than good?
(4)((G) $\mathrm{http}: / / \mathrm{bit} .1 \mathrm{y} / 2 \mathrm{geOD9j}$

There are a whole range of health risks associated with excessive exercise credit: getty images

Training Continuum

Unpacking Interval

 TrainingLisa A. Workman

Toe Tap Mania

* Aerobic Interval (80 bpm)
* Under the Bridge - Red Hot Chilli Peppers
* Anaerobic Capacity Interval (1 20 bpm)
* Staying Alive - Bee Gees
* Anaerobic Power Interval (160 bpm)
* Shake It Off-Taylor Swift

Interval Considerations

Intensity of work	Number of sets or series Duration of workBetween sets recovery duration
Intensity of rest	Between sets recovery intensity
Exercise modality	
Number of intervals	Others?

Benefits

Benefits

* most effective stimulus to improve $\mathrm{VO}_{2 \text { max }}$
* allows for large motor unit recruitment (Type II muscle fibres) and attainment of near maximal cardiac output
* signals for oxidative muscle fibre adaptation lincrease mitochondrial mass) and myocardium enlargement

Benefits

Cancer. 2007 Aug 1;110(3):590-8

Effects of presurgical exercise training on cardiorespiratory fitness among patients undergoing thoracic surgery for malignant lung lesions.

Jones LW ${ }^{1}$, Peddle CJ, Eves ND, Haykowsky MJ, Courneya KS, Mackey JR, Joy AA, Kumar V, Winton TW, Reiman T.
\oplus Author information
Abstract
BACKGROUND: To determine the effects of preoperative exercise training on cardiorespiratory fitness in patients undergoing thoracic surgery for malignant lung lesions.

Benefits

* variety in workout
* time efficient workout
* increase energy expenditure during and after workout (EPOC)

What's Next for Interval Training?

Cochrane Database of Systematic Reviews

Interval training exercise for hypertension (Protocol)

Oliveros MJ, Gaete-Mahn MC, Lanas F, Martinez-Zapata MJ, Seron P

http:///bit.|y/2uxL0Qq

Oliveros MJ, Gaete-Mahn MC, Lanas F, Martinez-Zapata MJ, Seron Interval training exercise for hypertension.
Cochrane Database of Systematic Reviews 2017, Issue 1. Art. No.: CD012511.
DOI: 10.1002/14651858.CD012511

www.cochranelibrary.com

References

* A brief history of interval training
* http://bit.ly/2yfPAle
* http://bit.ly/2xUrMHs
* http://bit.ly/2yg3XWK
* http://bit.ly/2ygf4z5
* http://bit.ly/2xkJl 1S

References

* Alberta fitness leadership certification association. (2001). Group exercise leader manual.
* Buchheit, M. \& Laursen, PB. (2013). High-intensity interval training, solutions to the programming puzzle. Part I. Sports Med. D0I $10.1007 /$ s40279-013-0029-x
* Buchheit, M. \& Laursen, PB. (2013). High-intensity interval training, solutions to the programming puzzle. Part II. Sports Med. DoI $10.1007 /$ s40279-013-0066-5
* Burke, E. (2002). Serious cycling. Champaign, IL: Human Kinetics Publishing Inc.
* Doyle-Baker, P. (2017). SIT, HIT, FIT: The science behind interval training. AFLCA Professional Development KT Article.
* Foss, M.L. \& Keteyian, S.J. (1998). Fox’s physiological basis for exercise and sport. (6th Ed.). Boston, Massachusetts: WCB/McGraw-Hill.
* Hoolihan, C. (2016). Enduring Intensity. IDEA Fitness Journal, Volume 13, Number 8.
* Karp, J.R. (2010). A primer on muscles. IDEA Fitness Journal, Volume 7, Number 5.
* Kennedy, C.A. \& Yoke, M.M. (2009). Methods of group exercise instruction. 2nd Ed. Champaign, IL: Human Kinetics Publishing Inc.
* Kory, K. \& Seabourne, T. (1999). Power pacing for indoor cycling. Champaign, IL: Human Kinetics Publishing Inc.
* Peterson, S. (2003). Peds 511 academic course notes.

$$
\begin{aligned}
& \text { ghoye } \\
& \text { gosers }
\end{aligned}
$$

Lisa A. Workman M.A., B.PE., CSEP-CEP, EIMC Level 2, AFLCA Trainer

www.lisaworkman.com
info@lisaworkman.com
Twitter: @medfitconsult

