

Lisa A. Workman

Sunday, September 24, 2017

The Office The Cover-Up Season 6 Episode 24 Dwight Schrute Takes Over Spin Cycle Class

* Exercise Physiology 101

* The Three Energy Systems

- * Training Continuum
- * Types of Intervals
- * Benefits

F - 1x/wk

History

l - 'top speed' with rest in between

T - 30 minutes

T - Running

5-6 110yard intervals

Fast 200-300 yard

10

5-10 repetitions, 1000m or 3min 5sec, 19km/hr or 11.78mph

fine art america

Fartlek - periods of fast running intermixed with periods of slower running

Bengt Saltin Per-Olof Åstrand

(1960s)

* Introduced intervals as % of VO_{2max} and % speed of VO_{2max}

* 30min, 15sec runs, 15sec rest

* Tabata identified the health benefits of exhaustive 20 seconds work, 10 seconds recovery workout plan

Building Blocks

Benefits

Types of Intervals

Training Continuum

Energy Systems

Exercise Physiology

Exercise Physiology 101

The interaction among the pulmonary, cardiovascular and skeletal muscle systems during exercise

V_A, ideal alveolar ventilation/time; V_D, physiologic dead space ventilation/time; V_E, total ventilation during expiration/time; Q_D, O₂ consumption; Q_{CO}, CO₂ production; V_{D2}, O₂ uptake; V_{CO}, CO₂ output; creatine PO₄, creatine phosphate. Courtesy of Wasserman

Muscle: The First Cog in the System

Muscle: The First Cog in the System

* Three types of muscle fibres:

- * Slow Twitch (Type I) Muscle Fibres
- * Fast Twitch (Type IIa) Muscle Fibres
- * Fast Twitch (Type IIb) Muscle Fibres
- * Others?

Characteristics of the Three Muscle Types

	Slow Twitch	Fast Twitch	Fast Twitch
Contraction Time	Slow	Fast	Very Fast
Size of Motor Neuron	Small	Large	Very Large
Resistance to Fatigue	High	Intermediate	Low
Activity	Aerobic	Long-term Anaerobic	Short-term Anaerobic
Force Production	Low	High	Very High
Mitochondrial Density	High	High	Low
Capillary Density	High	Intermediate	Low
Oxidative Capacity	High	High	Low
Glycolytic Capacity	Low	High	High
Major Storage Fuel	Triglycerides	Creatine Phosphate, Glycogen	Creatine Phosphate, Glycogen

Exercise Physiology 101

The interaction among the pulmonary, cardiovascular and skeletal muscle systems during exercise

V_A, ideal alveolar ventilation/time; V_D, physiologic dead space ventilation/time; V_E, total ventilation during expiration/time; Q_D, O₂ consumption; Q_{CO}, CO₂ production; V_{D2}, O₂ uptake; V_{CO}, CO₂ output; creatine PO₄, creatine phosphate. Courtesy of Wasserman

Heart: The Second Cog in the System

Heart: The Second Cog in the System

Exercise Physiology 101

The interaction among the pulmonary, cardiovascular and skeletal muscle systems during exercise

V_A, ideal alveolar ventilation/time; V_D, physiologic dead space ventilation/time; V_E, total ventilation during expiration/time; Q_D, O₂ consumption; Q_{CO}, CO₂ production; V_{D2}, O₂ uptake; V_{CO}, CO₂ output; creatine PO₄, creatine phosphate. Courtesy of Wasserman

Lungs: The Third Cog in the System

Lungs: The Third Cog in the System

- * Ventilation (V_E)
 - * the amount of air we expire in one minute

- * VO₂
 - * the volume of oxygen consumed in one minute
- * VCO2

* the volume of carbon dioxide produced in one minute

Lungs: The Third Cog in the System

Exercise Physiology 101

The interaction among the pulmonary, cardiovascular and skeletal muscle systems during exercise

V_A, ideal alveolar ventilation/time; V_D, physiologic dead space ventilation/time; V_E, total ventilation during expiration/time; Q_D, O₂ consumption; Q_{CO}, CO₂ production; V_{D2}, O₂ uptake; V_{CO}, CO₂ output; creatine PO₄, creatine phosphate. Courtesy of Wasserman Immediate: ATP-phosphocreatine system

Short-Term: Anaerobic/lactate system Long-Term: Aerobic system

Energy Systems: The Cogs Working Together as a Team

The Three Energy Systems

Figure 10-1: Sources of production of ATP for muscle contraction

The Three Energy Systems

Figure 3-1: The three systems of energy transfer and their percentage contribution to total energy output during all-out exercise of different durations.

Reference: McArdle, Katch and Katch. (1996). <u>Exercise Physiology. Energy, Nutrition and Human</u> <u>Performance.</u> Williams & Wilkins, Maryland. p. 190.

System	Rate of ATP Production	Energy Source	Capacity of System	Major Limitation	Major Use
Anaerobic Alactic Pathway (ATP-CP)	Very rapid rate	stored creatine phosphate (CP), stored ATP in the muscle	Very limited ATP production	Very limited supply of CP	Very high intensity, short duration sprint activities. During high intensity activities of 1-10 seconds.
Anaerobic Lactic Pathway	Rapid rate	Blood glucose, glycogen	Limited ATP production	Lactic acid by product causes rapid fatigue	High intensity, short duration activities. During high intensity activities of 1-3 minutes
Aerobic System	Slow rate	Blood glucose, glycogen, fatty acids	Unlimited ATP production	Relatively slow rate of oxygen delivery to cells	Moderate intensity, longer duration. During moderate to high intensity activities longer than 3 minutes. Fatty acid oxidation dominates after ~20 minutes of exercise.

Lisa A. Workman

Sunday, September 24, 2017

Training Continuum

- * Long Slow Distance (LSD)
- * Anaerobic/Lactic Threshold
 - exercise intensity at which lactic acid starts to accumulate in the blood stream and CO2 production begins to increase nonlinearly
 - lactate removal fails to keep up with the rate of lactate production causing increased in CO2 production
- * VO2max
 - * the maximum volume of oxygen consumed in one minute

Aerobic System: Longlerm

* Aerobic Intervals

- * Aerobic energy system
- * Blood Glucose, Glycogen, Fatty Acids
- * 1:1 Work-to-Rest Ratio
- * 1:0.5 Work-to-Rest Ratio
- * Example: 3 min flat time trial with 1.5 min spin-out recovery

Aerobic + Anaerobic Systems

- Combination of Aerobic and Anaerobic Capacity/Lactic Systems
 - * Moving from aerobic to anaerobic back to aerobic
 - * 1:2 Work-to-Rest Ratio
 - * Example: 1 minute time trial with 30s sprint; return back to time trial with each sprint interval

* Combination of the three energy systems

- * Alternating and variable speed and durations
- * No prescriptive Work to Rest Ratio
- * Example: Lamp post runs (increase speed for 3 lamp posts, decrease speed for 1 lamp post)

Anaerobic System: ShortTerm

- * Anaerobic Threshold Intervals
 - * Anaerobic Capacity; Anaerobic Lactic
 - * Glycolysis/Glycogenolysis
 - * 1:2 Work-to-Rest Ratio
 - * Example: 30s Seated Power with 1 min spin-out recovery

Anaerobic System: Immediate

* Anaerobic Intervals

- * Anaerobic Power; Anaerobic Alactic
- * ATP-CP
- * 1:3 Work-to-Rest Ratio
- * Example: 15s Sprint with 45s spin-out recovery

Anaerobic System: Immediate

- * VO_{2max} Intervals
 - * Anaerobic Power; Anaerobic Alactic
 - * ATP-CP
 - * 1:2 Work-to-Rest Ratio
 - * 1:3 Work-to-Rest Ratio
 - * Example: 30s at predetermined VO_{2max} with 60s recovery

* Anaerobic Power; Anaerobic Alactic

* ATP-CP

* 1:0.5 Work-to-Rest Ratio

Example: 20s at maximal effort with 10s passive recovery, repeat 8 times (4 minute set)

Circuit Training

- * "Aerobic Weight Training"
- * Stations with a variety of exercises that work the entire body
- * Including a weight that can be lifted without going to failure
- * May include cardiovascular exercise such as running, skipping, cycling etc.
- * Continuous time interval (consider the energy systems!)
- * Example: 1 minute at each station; complete cycle 1 to 3 times.

High Intensity Interval Training (HIIT)

A title to various forms of intervals including VO_{2max}, Tabata, some circuit training

High Intensity Interval Training (HIIT)

 \mathbf{n} > Lifestyle > Health and Fitness > Body

HIIT: is the fitness scene's biggest fad doing more harm than good?

f share) 🗹 🖾 http://bit.ly/2ge0D9j

There are a whole range of health risks associated with excessive exercise CREDIT: GETTY IMAGES

Lisa A. Workman

Sunday, September 24, 2017

- * Under the Bridge Red Hot Chilli Peppers
- * Anaerobic Capacity Interval (120 bpm)
 - * Staying Alive Bee Gees
- * Anaerobic Power Interval (160 bpm)
 - * Shake It Off Taylor Swift

Interval Considerations

Intensity of work	Number of sets or series
Duration of work	Between sets recovery duration
Intensity of rest	Between sets recovery intensity
Duration of rest	Exercise modality
Number of intervals	Others?

* most effective stimulus to improve VO_{2max}

* signals for oxidative muscle fibre adaptation (increase mitochondrial mass) and myocardium enlargement

Buchheit & Laursen (2013)

Cancer. 2007 Aug 1;110(3):590-8.

Effects of presurgical exercise training on cardiorespiratory fitness among patients undergoing thoracic surgery for malignant lung lesions.

Jones LW¹, Peddle CJ, Eves ND, Haykowsky MJ, Courneya KS, Mackey JR, Joy AA, Kumar V, Winton TW, Reiman T.

Author information

Abstract

BACKGROUND: To determine the effects of preoperative exercise training on cardiorespiratory fitness in patients undergoing thoracic surgery for malignant lung lesions.

* time efficient workout

* increase energy expenditure during and after workout (EPOC)

What's Next for Interval Training?

Interval training exercise for hypertension (Protocol)

Oliveros MJ, Gaete-Mahn MC, Lanas F, Martinez-Zapata MJ, Seron P

http://bit.ly/2uxLOQq

Oliveros MJ, Gaete-Mahn MC, Lanas F, Martinez-Zapata MJ, Seron P. Interval training exercise for hypertension. *Cochrane Database of Systematic Reviews* 2017, Issue 1. Art. No.: CD012511. DOI: 10.1002/14651858.CD012511.

www.cochranelibrary.com

Interval training exercise for hypertension (Protocol) Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. WILEY

* A brief history of interval training

- * http://bit.ly/2yfPAle
- http://bit.ly/2xUrMHs
- * http://bit.ly/2yg3XWK
- * http://bit.ly/2ygf4z5
- http://bit.ly/2xkJ1 1S

- * Alberta fitness leadership certification association. (2001). Group exercise leader manual.
- * Buchheit, M. & Laursen, P.B. (2013). High-intensity interval training, solutions to the programming puzzle. Part I. Sports Med. POI 10.1007/ s40279-013-0029-x
- * Buchheit, M. & Laursen, P.B. (2013). High-intensity interval training, solutions to the programming puzzle. Part II. Sports Med. POI 10.1007/ s40279-013-0066-5
- * Burke, E. (2002). Serious cycling. Champaign, IL: Human Kinetics Publishing Inc.
- * Doyle-Baker, P. (2017). SIT, HIT, FIT: The science behind interval training. AFLCA Professional Development KT Article.
- * Foss, M.L. & Keteyian, S.J. (1998). Fox's physiological basis for exercise and sport. (6th Ed.). Boston, Massachusetts: WCB/McGraw-Hill.
- * Hoolihan, C. (2016). Enduring Intensity. IDEA Fitness Journal, Volume 13, Number 8.
- * Karp, J.R. (2010). A primer on muscles. IDEA Fitness Journal, Volume 7, Number 5.
- * Kennedy, C.A. & Yoke, M.M. (2009). Methods of group exercise instruction. 2nd Ed. Champaign, IL: Human Kinetics Publishing Inc.
- * Kory, K. & Seabourne, T. (1999). Power pacing for indoor cycling. Champaign, IL: Human Kinetics Publishing Inc.
- * Peterson, S. (2003). Peds 511 academic course notes.

Lisa A. Workman M.A., B.P.E., CSEP-CEP, EIMC Level 2, AFLCA Trainer

www.lisaworkman.com

info@lisaworkman.com

Twitter: @medfitconsult